Influenza prevention in human populations: Vaccination considerations and the future of vaccines

> Victor C. Huber, Ph.D. September 24, 2015

victor.huber@usd.edu

Influenza Virus: Surveillance

Reference: http://www.cdc.gov/flu/weekly/weeklyarchives2007-2008/labsummary07-08.htm

Genetic and Antigenic Comparisons

FT SY97	post-infection ferret sera												
BE92	A/HK 1/68	A/Eng 42/72	A/Vic 3/75	A/Tex l/77	A/Bk 1/79	A/Phil 2/82	A/Miss 1/85	A/Shan 11/87	A/Beij 352/89	A/Beij 32/92	A/Jhb 33/94	A/Wuh 359/95	A/Syd 5/97
A/Hong Kong/1/68 A/England/42/72	1280 40	320 640	< 40	< <	< <	< <	< <	< <	< <	<	< <	< <	< <
SI87 A/Victoria/3/75 A/Texas/1/77	< 40	< 40	640 80	< 1280	< 320	< 160	<	< 40	<	<	<	<	<
A/Bangkok/1/79 A/Philippines/2/82	<	40 <	$ 40 \\ 40 $	320 80	1280 80	160 640	< 80	80 160	40 80	<	<	<	<
A/Mississippi/1/85 A/Shanghai/11/87	< <	< 40	< <	40 40	80 80	80 80	1280 40	160 640	80 80	<	< <	<	<
VI75 A/Beijing/352/89 A/Beijing/32/92	<	<	<	<	<	< <	<	80 <	2560 80	< 640	< 80	< <	<
A/Johannesburg/33/94 A/Wuhan/359/95	<	<	< <	< <	<	<	<	<	40 <	80 40	640 40	80 1280	< 160
HK68 A/Sydney/5/97	<	<	<	<	<	<	<	<	<	<	<	160	2560

- Both genetic and antigenic comparisons are made
- An antigenic distance of four-fold typically yields a change in vaccine isolate
- Selection is based on both antigenicity and ability to produce highyield vaccine product

Antigenic Map of Influenza H3 Evolution in Humans

 Once influenza viruses enter the human population, they change through antigenic drift

• Clusters defined by changes in recognition of the virus by antibodies

 Vaccines are updated based on changes in circulating strains

Smith et al., Science, 305:371, 2004

Influenza Virus: Antigenic Sites Antigenic Drift

- Small, continuous change:
 - Variation within the globular head

Influenza Vaccine Development Cycle (Northern Hemisphere)

Centers for Disease Control and Prevention. *MMWR Morb Mortal Wkly Rep.* 2006;55:1. World Health Organization. *Wkly Epidemiol Rec.* 2002;77:229-240.

Vaccination Remains Our Best Method of Prevention Against Influenza Virus

What about anti-virals?

- Two classes of antivirals that target influenza
- M2 inhibitors (amantadine and rimantadine)
 -resistance develops rapidly
 -current H5N1 viruses are already resistant
 -current H3N2 viruses are resistant (100%)

-NA inhibitors (oseltamivir and zanamivir) -pre-2009 H1N1 viruses were resistant

Vaccination: Adaptive Immunity

- Acquired Immunity
- Specificity (clearance)
- Memory develops against pathogen
 - Antibody (HA)
 - Goal of vaccination

Figure 1-16 Immunobiology, 6/e. (© Garland Science 2005)

Antibody Response to Vaccination

Figure 1-20 Immunobiology, 6/e. (© Garland Science 2005)

Neutralization of Viral Particles by Antibodies

Janeway et al., Immunobiology, 2001

Epidemic (Seasonal) Influenza Vaccines

Trivalent or Quadrivalent vaccine H1N1, H3N2, and B viruses

Single representative isolate (determined by surveillance)

2015-16 vaccine (Northern Hemisphere): February 26, 2015 A/California/7/2009 = H1N1 A/Switzerland/9715293/2013 = H3N2 B/Phuket/3073/2013 = B (Yamagata 88 lineage) B/Brisbane/60/2008 = B (Victoria 87 lineage)

Influenza vaccines widely used in the U.S.

	Inactivated (IIV)	Live, attenuated (LAIV)
FDA-approved	Since 1960's	Since 2003
Route of administration	Intramuscular	Intranasal
Virus	Split-virus or subunit inactivated virus	Cold-adapted, temperature sensitive, live attenuated virus
Growth medium	Chicken eggs	Chicken eggs
Indication	Persons > 6 months	Healthy persons 2-49 years

Inactivated Influenza Vaccine (IIV)

 Only hemagglutinin (HA) is included as a standardized component of IIV (15 μg HA content)

Adapted from: Hayden FG, Palese P. Clinical Virology 1997. 911-942.

Live, Attenuated Influenza Virus (LAIV)

- Major antigens in natural configuration
- Designed to induce an immune response that resembles the response after natural infection

Adapted from: Hayden FG, Palese P. Clinical Virology 1997. 911-942.

LAIV Properties

A. Cold-adapted

- FluMist vaccine strains replicate efficiently at 25°C
- Nasopharyngeal replication induces protective immunity

B. Temperature-sensitive

- Replication is restricted at 37°C (Type B) or 39°C (Type A)
- FluMist replicates inefficiently in the lower airways or lungs

FluMist[™] Prescribing Information. ACIP (Advisory Committee on Immunization Practices). *MMWR 2004 Vol. 53*.

Recent Changes to Influenza Vaccines: Trivalent Vaccine Formulations

- High dose trivalent vaccine
 - Approved for individuals 65 and over
- Trivalent vaccine from cell culture
 - Approved for individuals 18 and over
- Jet injector delivery
 - Approved for individuals 18-64 years of age

H1N1 A/California/7/2009

H3N2 A/Switzerland/9715293/2013

Influenza B Virus

B (Yamagata lineage) B/Phuket/3073/2013

http://www.cdc.gov/flu/keyfacts.htm, Accessed September 10, 2015

http://www.cidrap.umn.edu/news-perspective/2015/09/fda-panel-recommends-adjuvanted-flu-vaccine-seniors, Accessed September 16, 2015

Influenza A Virus

Recent Changes to Influenza Vaccines: Quadrivalent Vaccine Formulations

Quadrivalent vaccine (2 influenza B virus isolates)

- IIV: Approved for individuals as young as 6 months
- LAIV: Approved for individuals 2-49
- Intradermal: Approved for people 18-64

H1N1 A/California/7/2009

H3N2 A/Switzerland/9715293/2013

B (Victoria lineage) B/Brisbane/60/2008

Influenza B Virus

B (Yamagata lineage) B/Phuket/3073/2013

http://www.cdc.gov/flu/keyfacts.htm, Accessed September 10, 2015

http://www.cidrap.umn.edu/news-perspective/2015/09/fda-panel-recommends-adjuvanted-flu-vaccine-seniors, Accessed September 16, 2015

Recent Changes to Influenza Vaccines

Recombinant trivalent vaccine

- HA protein
- Egg-free
- Approved for people 18 years and older (January, 2013)

- A/Hong Kong/1/68 HA
- Adjuvanted influenza vaccine
 - MF59: Approved for use in Europe, may be approved in US soon

http://www.cdc.gov/flu/keyfacts.htm, Accessed September 10, 2015

http://www.cidrap.umn.edu/news-perspective/2015/09/fda-panel-recommends-adjuvanted-flu-vaccine-seniors, Accessed September 16, 2015

Issues Facing Influenza Vaccines

Problems with Influenza Vaccines

• Time-consuming (6-9 months)

Recombinant HA protein vaccines

• Egg-based vaccine

- Allergies
- Shortages (pandemic)
- Novartis = cell-based (MDCK) vaccines
- Bacterial contamination
- Inability to grow in eggs
- Mismatch from circulating strains
 - Constant surveillance (WHO = 1952)
- Immunogenicity
 - MF59 adjuvant

Future Varieties of Influenza Vaccines?

- Neuraminidase
- Conserved epitopes
 - HA stem (less variability)
 - M2e (23 conserved amino acids)

A/Hong Kong/1/68 HA

Fields Virology

Summary

- Surveillance identifies genetic and antigenic changes in influenza viruses
- Vaccination remains our best tool for preventing infection
- Current vaccines come in IIV, LAIV, and recombinant HA forms
- Not all issues have been resolved, and future vaccines are being developed to provide more universal immunity

Questions?

